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J. Phys. A: Math. Gen. 14 (1981) 2943-2956. Printed in Great Britain 

Space-time topology and spontaneous symmetry breaking 

C J Isham 
The Blackett Laboratory, Imperial College, London SW7 2BZ, UK 

Received 21 April 1981 

Abstract. Spontaneous symmetry breaking of a gauge theory with topological charge is 
studied in an arbitrary space-time. Sets of relations on the topological charges are found 
which, if not satisfied, inhibit the symmetry breaking from that particular sector. Different 
solutions to these relations correspond to a symmetry breaking into topologically 
inequivalent gauge sectors of the residual symmetry group. 

1. Introduction 

Many physical applications of gauge theories invoke spontaneous symmetry breaking in 
order that various particles may acquire masses without disturbing the renormalisability 
of the quantised theory. Especially important examples are quantum chromodynamics, 
Salam-Weinberg weak/electromagnetic unification and grand unified theories of the 
weak, electromagnetic and strong interactions. Currently there is much interest in the 
role played by these theories in the early stages of the universe. However, in such a 
regime, space-time structure may differ significantly from the conventional, flat, 
Minkowskian picture and it becomes important to understand how, for example, a 
non-trivial topology affects the symmetry breaking mechanism. Topologically complex 
space-times also occur in the Riemannian approach to quantum gravity (Hawking 
1979, Pope 1981 for a recent review) and topological ideas have found many appli- 
cations in studies of quantum field theory in a fixed, unquantised, gravitational 
background. (A bibliography and brief review are contained in Isham (1981a).) 
Non-trivial manifolds also arise in Conventional instanton theory if unusual boundary 
conditions are employed (’t Hooft 1979) or in magnetic monopole theory if the region 
containing the monopoles is excised. 

There have been various investigations of spontaneous symmetry breaking in a 
curved space-time, and the role of space-time topology is discussed in Avis and Isham 
(1978, 1979), Banach (1980), Birrell (1981), Ford (1980), Toms (1980, 1981). All 
these papers are concerned with a scalar field 4 and the Z 2  action 4 +. -4. This problem 
is of special interest when the space-time M is not simply connected and non-trivial real 
line bundles may occur. The cross sections of such bundles are ‘twisted’ scalar fields 
(Isham 1978) and necessarily vanish somewhere. In particular the conventional 
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solution, in which q5 equals a non-zero constant, does not exist and in this sense the Z2 
symmetry breaking is inhibited. 

Non-trivial line bundles are classified by elements of the cohomology group 
H'(M; Z2) = Hom(m(M),  Z2) and in the present paper an extensive generalisation is 
presented in which the initial and final symmetry groups are an arbitrary Lie group G 
and subgroup H respectively. The aim is to study a G-gauge theory in an arbitrary 
manifold M and to find necessary and sufficient conditions for the occurrence of 
symmetry breaking from G to H (written GJH) .  We shall see that these involve the 
'topological charges' of the initial G-sector. For certain pairs (G, H) there are always 
some charge values which allow G + H ,  whilst for other pairs the ability to satisfy these 
conditions depends on fine details of the space-time topology. An additional possibility 
is the breaking of a given G-sector into a number of inequivalent H-sectors. This 
splitting phenomenon will be denoted G < H. 

Most of these effects only occur on a manifold of dimension four (or above), and for 
this reason attention will be focused on a compact four-dimensional space-time. Thus 
the investigation lies within the framework of Riemannian quantum foam (Hawking 
1978) and gravitational instantons, rather than within the canonical quantisation 
schemes frequently employed in discussions of twisted scalar fields. 

The topological results were announced in Isham (1981b), but with no proofs and a 
sketched method which involved a Postnikov decomposition of a certain fibration. A 
simpler technique is employed in the present paper which sidesteps the Postnikov study 
by invoking the fact that all G-bundles over a manifold of dimension four (or less) may 
be cohomologically classified by sets of characteristic classes. The proof of this result 
involves Postnikov techniques and in this sense the two approaches are equivalent. A 
number of other results were described in the preliminary paper, including a demon- 
stration of the existence of a classical phase change in vacuum solutions to the field 
equations as the coupling constant is varied. These results will not be duplicated here 
and I shall concentrate on the topological aspects of the problem. 

Section 2 contains a short review of the fibre bundle picture of spontaneous 
symmetry breaking in a general space-time. The solution of the G + H  and G <  H 
problems is discussed in § 3 using the theory of universal bundles and characteristic 
classes. A number of specific examples are displayed in § 4, including the pairs of 
groups (G, H) most commonly employed in grand unified theories. 

2. Spontaneous symmetry breaking in a curved space-time 

2.1. 

A standard Lagrangian contains a gauge field U, and a G-multiplet 4 of scalar fields. 
The field strength F+,, is defined as 

(2.1) 
F I ~  =a,w; -a,@: + ~ f ~ ~ ; ~ ,  " k  

where Cik are the structure constants of the symmetry group G.  The theory is defined 
on a compact four-manifold equipped with a Riemannian metric g,, and has the action 
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The field equations are 

where TI, is the Lie algebra representation matrix arising in the covariant derivative 
a&’ = a&‘ +a, TI&’. It is to be understood that the covariant derivatives in (2.3) 
and (2.4) include Christoff el symbol contributions where appropriate, 

The solutions which give the absolute minimum of the action satisfy 

aFcp‘ = 0 ,  avlacp‘ = 0 ,  (2.5) 

and, in a typical symmetry breaking situation, the potential V(4) is chosen so that these 
equations admit solutions other than 4 = 0 which typically lie in the bottom of a ‘valley’ 
in V. For example, if G = SO(n) and V(4) = (4 * q5 - a2) (4  * 4 - b z )  (i = 1 . . . n )  then 
the classical stable ‘vacuum’ configurations are 4 * 4 = a2 or 4 * 4 = b2. 

In general, if q5 belongs to a real n-dimensional representation of G, the possible 
solutions of aV/a4 ‘=0  lie on various submanifolds of [w“ ((n-1)-spheres in the 
example above) and G acts transitively on each one. Each submanifold (G-orbit) has its 
own isotropy group H, and hence the corresponding vacuum Higgs-Kibble fields 4 take 
their values in the coset space G/H.  This however is only a local picture, and globally 4 
must follow the twists in the gauge structure present if the G-sector contains a 
non-vanishing topological charge. There then arises the possibility that, for topological 
reasons, such fields cannot be defined on all of M and consequently the spontaneous 
symmetry breaking from G to H is inhibited. In order to discuss this question 
adequately, it is necessary to be more precise about the mathematical status of the 
Higgs-Kibble fields. 

2.2. 

The language of fibre bundle theory is frequently employed in discussions of gauge 
theories, but it is all too often nothing but a language and the intrinsic power of the 
formalism is not invoked. However, the situation in our case is quite different, as the 
global topological properties of M play a vital part and it is precisely towards the 
topological structure that the non-trivial aspects of bundle theory are directed. 

The starting point is a principal G-bundle P over M (Mayer 1977, Daniel and 
Viallet 1980) in which the Yang-Mills field is represented by a connection. A 
non-vanishing topological charge corresponds to P being non-trivial and is represented 
mathematically by the appropriate characteristic classes. If the Higgs-Kibble fields 
locally take their values in a vector space W, the correct mathematical picture is 
obtained by regarding them as cross sections of the associated vector bundle P xG W 
(for a review see Mayer (1981)). The symmetry breaking equation aV/acpi = 0 assigns 
the range of 4 to a fixed G-orbit in the vector space W with isotropy group H, and 
hence these particular vacuum solutions correspond to cross sections of the associated 
fibre bundle P XGG/H. Now P X G  G / H  is naturally isomorphic to P/H-the principal 
bundle P with the H-action factored out-and cross sections of this bundle are in 
one-to-one correspondence with reductions of the structure group from G to H 
(Kobayashi and Nomizu 1963). With each such reduction there is associated a principal 
H-bundle Q with an H-covariant embedding 1 of Q into P. This may be summarised in 
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the map diagram 
I 

H-O-P 

where p and q are respectively the projection maps from P onto P / H  and P X G  G / H  = 
P/H onto M and are related to the projection map T of the original G-bundle P + M by 
~ = q . p .  The bundle (Q ,p4 ,M)  is the pull back of (P,p,  P/H) with Q =  

The key observations are that, depending on the topological properties of M and the 

(i) Such reductions may or may not exist. In the latter case there is a topological 

(ii) If reduction is permitted, homotopically inequivalent Higgs-Kibble fields may 

The actual mathematical problem is to describe, in as simple a manner as possible, 

{(x, e )  E M x P I 4 ( X I  = P k ) )  and P4 (x, e )  := P b ) .  

topological charge of P :  

obstruction to G+H. 

lead to inequivalent H-bundles, i.e. H-sectors with different 'topological charges'. 

the relations between the topological charges and properties of M. 

3. Characteristic classes and spontaneous symmetry breaking 

3.1. 

Universal bundle theory and characteristic classes are singularly appropriate for 
tackling this problem. The starting point is that, for any Lie group G, there exists a 
space BG (unique up to homotopy type) such that the set BG(X) of isomorphism classes 
of principal G-bundles over any 'nice' space X (CW complex) is in one-to-one 
correspondence with the set [X, B G ]  of homotopy classes of maps from X into BG 
(Bore1 1967, Milnor and Stasheff 1974, Switzer 1975). A map f 6 : X + B G  which 
represents a particular bundle 5 is said to be a classifying map. 

For certain groups G,  BG may be represented by a well known space. For example 
BU1- S1, BZZ - W" and BUI - CP" where W" and CP" are respectively infinite- 
dimensional real and complex projective spaces. Provided that one is prepared to limit 
the dimension of X, simple models for BG may also be exhibited for other groups. In 
this context SU(n) and SO(n)  have complex and real Grassmann manifolds as classify- 
ing spaces and, if dim M S 4, an example of BSU2 is the four-sphere. These facts are 
discussed in the cited texts and in Avis and Isham (1979). 

Universal characteristic classes for G are any non-vanishing cohomology elements 
of BG. If ft classifies 6 and CEH' (BG;  T), where T is an Abelian group, then 
C(6)  := f g  ( C )  is said to be a characteristic class for 5. In the physics literature, the 
characteristic classes of a given G-bundle are usually known as the topological charges 
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of the corresponding gauge sector. A feature of particular physical importance is that 
G-bundles over a manifold M can be completely and uniquely classified by certain sets 
of characteristic classes provided that dim M 6 4 (Dold and Whitney 1959, Avis and 
Isham 1979, Woodward 1980). For example BUl(M) = H2(M; Z), Bsu(,,)(M) = 
H4(M; Z) and BUc,,(M) = H2(M; Z)OH4(M; Z )  ( n  3 2) where the two- and four- 
dimensional cohomology elements are known as the first and second Chern classes. 

3.2. 

When discussing the symmetry breaking problem, the first step is to realise that, if H is a 
subgroup of G with embedding J : H + G, then any H-bundle q can be regarded as a 
G-bundle 6. There is a universal map BJ : BH + B G  such that the classifying map for 6 
is BJoh where h classifies q. Conversely the structure group of a G-bundle 6, with 
classifying map f : M + BG, can be reduced to H if (and only .if) f can be factored 
through a map h : M + BH such that f = BJ 0 h. Hence symmetry breaking from G to H 
is possible if and only if there exists a function g in the following diagram extension of 
(2.10) : 

The maps w and w 04 = h classify the principal H-bundles (P, p ,  P/H) and (Q, p+,  M )  
respectively and h exists if and only if the Higgs-Kibble field (6 exists. 

Note that (61 - (62 implies o 0 (61 - w 0 (62 and hence homotopically equivalent Higgs- 
Kibble fields induce isomorphic H-bundles Q. On the other hand, if a pair of 
non-homotopic maps d1 and (62  lead to non-homotopic w 0 ( 6 ~  and w 0 ( 6 ~ ,  then the 
Q-bundles will be inequivalent. This is precisely the G 2 H phenomenon. 

The aim of our work is to find necessary and sufficient conditions on the topological 
charges/characteristic classes of 5 for h to exist and hence symmetry breaking to occur. 
Clearly this is a viable proposition only because of the feasibility, mentioned above, of 
cohomologically classifying G-bundles when dim M s 4. These conditions are closely 
connected with the relationships between the topological charges of 5 and q (the 
reduced H-bundle Q) that necessarily arise when G +  H. These necessary relation- 
ships occur in answering the question: ‘Given an H-bundle q, what are its G-  
characteristic classes when viewed as a G-bundle?’ For example if (G, H) = (SU2, U1) 
the appropriate question is: ‘What is the second Chern class C2(6) of the SU2-bundle 6 
obtained from a U1 bundle q, classified by its first Chern class C1(q), when U1 is viewed 
as a subgroup of SU2?’ We shall see in § 4 that the answer is 

(3.2) Cz(6) = -C1(V) U Cl(7). 
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(In contemplating such an equation it may be helpful to recall that in the Chern-Weil 
theory the real (rather than integral) cohomology classes are represented by differential 
forms and the cup product by the exterior product (Kobayashi and Nomizie 1969).) 

Thus (3.2) is a necessary relation between Cz([) and Cl(q) for S U 2 j U 1 .  On the 
other hand, let us start with an SU2-bundle 5 classified by CZ([) in H4(M; Z )  and look 
for sufficient conditions for S U 2 j U 1 .  Suppose that there exists some a in H2(M; Z )  
such that 

(3.3) C&) = -a U a. 

Then a must be the first Chern class of some U1 bundle q and, if it is viewed as an 
SU2-bundle t', we know that Cz([') = -a U a. However, SU2-bundles are uniquely 
classified by their second Chern classes and hence e-[ ' .  Since, by construction, the 
structure group of 5' can be reduced to U1, then so can the structure group of 5, and 
hence (3.3) is a suficient condition for SU2 j U l .  Furthermore, the first Chern class of 
the ensuing U1-bundle is precisely a. 

Note that in general the topology of M will be such that an CY satisfying (3.3) only 
exists for certain values of Cz(5), and therefore symmetry breaking will occur only in 
those SU2-sectors, while in the rest it is obstructed. On the other hand, there may be 
several CY satisfying (3.3) for a given Cz([), corresponding to the symmetry breaking of 
SU2 into different U1-sectors. For example, let M = Sz x S2. Then H2(M;  Z )  = Z O Z  
and H4(M; Z )  = Z with generators yL, yR and S satisfying 

8 = -yL U YR. (3.4) 

Any a in H2(M; Z) can be written as a sum CY = syL+ ryR with integer coefficients s and 
r. Clearly CY U a = 2sryL U yR. On the other hand, Cz(5) = p a  for some integer p ,  and 
hence SU2 j U 1  only if the second Chern number p can be written asp  = 2sr for some s 
and r (cf Duff and Madore 1979). 

For an arbitrary pair of Lie groups G and H we can proceed as follows. Let 
{C, . , , C,} and { d l  . . . d,} be sets of universal classes which, when dim M S 4, uniquely 
classify G- and H-bundles respectively. There may be relations within a set of the form 

Rk(C1.. . C,)=O, 

Sl(d1 . . . d,) = 0 ,  

k = 1 . .  . K, 

1 = 1 . .  . L, 
(3.5) 

where cup products, coefficient reductions and occasionally other cohomology opera- 
tions may occur. For example SO(n)-bundles ( a  2 5 )  are classified by the set of elements 
( W2, p )  in H2(M; Zz)OH4(M; 2)  (the second Stieffel-Whitney and Pontryagin classes) 
satisfying p mod 2 = Wz U Wz. Note that other characteristic classes may exist but they 
are functionally related to those appearing already. For example, in an SO(n)-bundle, 
W3 is determined by Wz. 

If h : M + B H  represents an H-bundle q then the characteristic classes {di(q) = 
h*di E H'j(M; T ; ) }  satisfy 

S l ( d l ( 7 )  f * d S ( 7 7 ) )  = 0 ,  1 = 1 . .  . L, (3.6) 

and the set { d l  . . . d,} must be chosen so that any set of cohomology classes {cui E 
H"j(M; T : ) }  satisfying &(al  . . . a,) = 0,  1 = 1 . . . L, are the cohomology classes of some 
H-bundle (this is possible if dim MG4). Similar remarks apply to the set {Cl . . . Cr}.  



Space-time topology and spontaneous symmetry breaking 2949 

Now, let 77 be such a bundle and consider the characteristic classes Ci(,$)= 
(BJoh)*Ci E H'li(M; 7ri) of v viewed as a G-bundle 5. There will be relations 

Ci(&)=Pi(d1(7) * d s ( v ) ) ,  i = 1 . .  . r, (3.7) 

Rk(Cl(,$) * * * cr(,$)) = 0 ,  k = 1 . .  . K. (3.8) 

Equations (3.7) are necessary conditions for G J H .  On the other hand, arguing as in 
the S U 2 3 U 1  example, a sufJicient condition for the symmetry breaking of a given 
G-bundle 6 is the existence of {ai E Hqj(M; T : ) ,  j = 1 . . *. s} satisfying 

which identically satisfy 

sl(a1 . * I a,) = 0 ,  

Ci(6) = Pi(a1 * . . a,) 

1 = 1 * .  . L, 
i = 1 . .  . r. 

(3.9) 

The characteristic classes of the reduced bundle 
existence, for fixed 5, of different sets of a1 . . . as satisfying (3.9) leads to G 

every h, 

are simply d j ( v ) = a j  and the 

Now Ci(t) = (BJoh)*(Ci) = h*BJ*(Ci) and di(q) = h*dP Then (3.7) gives, for 

i = 1 . . . r, (3.10) 

H. 

h*(Pi(dl . . . d,)-BJ*(Ci))=O, 

which implies 

Pi(d1 . . . d,) =BJ*(Ci), i = 1 . . . r, (3.11) 

since the elements in H'li(M; 7rj)  uniquely specify H-bundles. Thus the polynomials Pi, 
which give the solution to the whole problem of relating the existence of spontaneous 
symmetry breaking to the presence of topological charge, may be found by studying 
relations between the universal characteristic classes. For many pairs of groups (G, H) 
these relations are readily available in the mathematical literature, and it is usually 
relatively straightforward to compute the rest from scratch. 

4. Specific examples 

4.1. 

The simplest example is G = SU(n) and H = U  (the trivial subgroup). In this case BH is a 
single point, and since an SU(n)-bundle on a four-manifold is classified by its second 
Chern class, equation (3.11) becomes P(C2) = 0. Hence symmetry breaking from 
SU(n) to U occurs only when the topological charge is zero. Similarly S O ( n )  +I if and 
only if p ( 5 )  = W&) = 0. 

In general, one can exploit the fact that the map BJ: B H + B G  is actually a fibre 
map with fibre the coset space G / H  (Borel 1967). Information on the action of BJ*  on 
the cohomology groups of B G  can be abstracted from the Serre short exact cohomology 
sequence of the bundle G / H +  BH-BG: 

BJ 

The group beyond H2(BG; 7 ~ )  to which this sequence can be extended depends on the 
number of lower-order cohomology groups of BG and G / H  that vanish (Borel 1967, 
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Spanier 1966). In the following symmetry breaking calculations it is easy to check that 
we are within the range for which Serre's sequence is exact. 

4.2. 

Next consider SU3 .$ SU2 with SU3/SU2 = S5 and so Hi(SU3/SU2; 2)  = 0 for 1 s i s 
4. Then (4.1) with Z-coefficients gives 

BJ* 
O-+ H4(BSU3; Z) - H4(BSU2; Z) -+ 0. (4.2) 

However H4(BSU2; Z) = H4(BSU3; Z) = Z with the second Chern class as generator in 
both cases. Thus, in an obvious notation, BJ"C2 (SU3) = *Cz(SU2). The sign ambi- 
guity is conventionally resolved by defining the SU3-class to be the same as SU2, and 
thus (3.11) reads 

BJ*CZ(SU3) = G(SU2).  (4.3) 

The analysis of 8 3.2 shows that SU3 breaks to SU2 without obstruction and into a 
unique sector. Similarly SU4/SU3 = S7 implies SU4 3 SU3, and in general we get the 
chain 

+SU(n).$- * * j S U 4 + S U 3 j S U 2  (4.4) 

with no obstructions or splitting at any stage. 
Since SO(n + l ) /SO(n)  = S" the same technique is applicable (if n 3 5 ) ,  giving 

jSO(n) .$ -  * j S O 7 + S O 6 + S O 5  (4.5) 

(4.6) 

with 

BJ"(SO(n + 1)) = p ( S O ( n ) ) ,  BJ* W,(SO(il + 1)) = Wz(SO(n)). 

The situation when il = 4 is complicated by the appearance of an extra characteristic 
class (the Euler class e)  in H4(M; Z) in the classification of SO4-bundles. Again one 
finds BJ"p(SO5) = p(S04)  and BJ" W2(SOS) = Wz(S04) and SO5 + SO4 without 
obstruction. However, the Euler class is left unspecified and can therefore label 
inequivalent S04-sectors leading to the splitting SO5 y" S04 .  

When G = SO4 and H = SO3 the Z-Serre sequence gives 

BJ* 
0 + Z G H 4 ( B S 0 4 ;  Z)-H4(BS03; Z) (4.7) 

and, as before, BJ"p(SO4) = p(S03)  and BJ" Wz(S04) = Wz(s03).  However the 
Euler class e is defined so that T ( L )  = e ( L  is an appropriately chosen generator of 2)  and 
hence, by exactness, B J * ( e )  = 0. Thus a necessary and sufficient condition for S 0 4 +  
SO3 is e([) = 0 and there is no splitting. 

The SO3 3 SO2 = U1 case was studied many years ago (albeit not in the context of 
spontaneous symmetry breaking!) by Massey (1958) and Dold and Whitney (1959) who 
found 

BJ"p(SO3) = -C1 U C1, BJ* W2(S03) = C1 mod 2. (4.8) 
Thus a necessary condition for SO3 +SO2 is p ( 6 )  = -C1(q) U C1(q) and WZ([) = 
C I ( ~ )  mod 2, whilst a sufficient condition is the existence of a in H2(M; Z) such that 
p ( 6 )  = -a U a and Wz(6) = a mod 2. As in the SU2+U1 example, equation (4.8) 
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leads to a blocking of S03+S02  from certain S03-sectors and an SO3 3 SO2 
splitting. 

4.3. 

An interesting example is G = SU(n + l ) ,  H = U(n) with SU(n + l) /U(n) = CP". The 

embedding of U(#) into SU(n + 1) is J : U -  (~*) which can be factored as 

t (4.9) 
J b SU(n + 1) 

where A(U) = (U, U) and k and 1 are the usual embeddings. The maps 'det' and 1 arise 
in the fibre bundle SU(n)+U(n)-U(l) and associated fibration (Borel 1967) 
BSU(n)-BU(n)-BUl. Using the Serre sequence and H'(BSU(n); Z) = 0, 
1 s i  s 3, we obtain 

I det 

BI B det 

Bdet* 
0 + H2(B U 1 ; Z) - H2 (B  U (n  ) ; Z) + 0, 

Z(Cd Z(C1) 

(4.10) 

and 
Bdet* BI* 

O+H4(BU1; Z) - H4(BU(n); Z) - H4(BSU(n); Z) + 0, (4.11) 

Z(C1 U Cl) Z(C1 U Cl) 0 Z(C2) Z(C2) 

where the groups and generators have been written below the exact sequences. 
Now (4.10) implies Bdet*Cl(U1) = C,(U(n)) and hence Bdet*(C1(U1) U 

C1(U1)) = Cl(U(n)) u Cl(U(n)) which, on using the exactness of (4.11), gives Bl*(C1 U 

Cl) = 0 and BZ*Cz(U(n)) = C2(SU(n)). Applying the last result to (4.9) with the 'B' 
operation applied, we obtain 

BJ*CZ(SU(n + 1)) =BJ*Bl*C2(U(n + 1)) 

= BA*B(1 x det-l)*Bk*C2(U(n + 1)). (4.12) 

Now the Whitney formula (Borel 1967, Milnor and Stasheff 1974) gives Bk*C2(U(n + 
1)) = C2(U(n)) x 1 + C,(U(n)) x C1(U1) and det-' is det followed by U1 + U1, A-A-' 
which takes C1(U1) into -Cl(Ul). Hence (4.12) gives the appropriate form of (3.11): 

(4.13) 

Thus a necessary condition for an SU(n + 1)-bundle 6 to break to a U(n)-bundle 7 is 
C2([) = C2(q) - Cl(7) U Cl(7), whilst a sufficient condition is the existence of cr E 
H4(M; Z) and P E H2(M; Z) such that 

(4.14) 

Clearly this imposes no restrictions if n > 1 (so that Cz(U(n)) # 0) and SU(n + 1) +U(n) 
is always allowed with a splitting SU(n + l ) < U ( n ) .  Note that when n = 1 we get 
C2(U(1)) = 0 and hence derive the SU2 .$ U1 results cited earlier. 

BJ*Cz(SU(n + 1)) = C*(U(n))- Ci(U(n)) U Ci(U(n)). 

C2(E) = a - P  U P .  
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4.4. 

Finally, let us discuss some of the groups that are currently employed in unified and 
grand unified theories. It is most important to establish the global form of the group. 
Thus the Salam-Weinberg SU2L x U1 is globally U2, as is clear from the typical field 
transformations under (AL, eie) E SU2,X U1, 

(",6) -+ALeie( ",:,, (r:) L -+Ale-"( ,") L etc (4.15) 

where (4+, 4') is the Higgs pair. The Z2 subgroup 

acts trivially, so the effective group of transformations is SU21- x U1/Z2 = U2. The 

Ul,, subgroup is embedded in U2 as J(e") = ( O )  and in SU2LxU1 as 
0 1  

The topological properties of symmetry breaking G +  Ul,, depend very much on 
whether G is chosen to be U2 or SU2L x U1, which in turn is dictated by the particle 
multiplets in the theory. 

The U(n)+U(n - l)+ 0 * chain is very similar to the SU(n) series discussed in 
Q 4.1. In general, BJ"C2(U(n)) = Cz(U(n - 1)) and BJ"Cl(U(n)) = Cl(U(n - 1)). In 
particular, BJ*C2(U(2)) = 0 and BJ*Cl(U(2)) = CI(U(1)). Hence U(2)=$U(1) if and 
only if the 'instanton number' (i.e. second Chern class) of the U(2)-sector vanishes. On 
the other hand, using an analysis similar to that employed in 0 4.3, the SU2L X U1 3 
Ul,, result is 

BJ"CZ(SU2L) = -C1(Ule, UUl,,), BJ"Cl(U1) = C1(Ulem), (4.16) 

which gives both blocking and splitting of the symmetry breaking. 

4.5. 

A very popular grand unified theory is based on the group SU5 which breaks at 
1015 GeV to ( S U ~ L  X U1 X SU3,)/Zs and at 100 GeV to U3. The cyclic group Z6 is the 
kernel of the homomorphism from SU2, x U1 x SU3, into SU5 given by 

and has the generator 

(see Scott 1980). The U3 subgroup is locally the product of Ul,, and the colour group 
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SU3,, and is embedded in (SU2L x U1 x su3c)/z6 by 

U ) det -1 det U-112 
i(u)=[( det ' ' de t  U1I3 z6 

(4.17) 

where the ambiguous roots are chosen so that det 
Let H denote (SU2= x U1 x su3c)/z6 with k as the subgroup embedding of H in 

SU5. Using 1 : H + U2 x U3 defined by / [A,  eie, C],, := ( A  e3ie, C e-2ie) and the obvious 
embedding m of SU5 in U5, we may construct the commutative diagrams: 

det U"6 det U1/3 = det U. 

BI H I u 2 x u 3  BH-B(U2 x U3) 

I J  I k  (4.18) 

S U S " U 5  

BI 
BH-B(U2 x U3) 

(4.18) 

H is a normal subgroup of U2 x u 3  and is the kernel of the map t :  U2xU3+U1 
defined by t(A, C) = det A det C. This induces (Bore1 1967) the fibration 

Bl 
U1 +BH-B(U2 x U3) (4.19) 

which may be employed as follows to compute the universal characteristic classes of H. 
The Gysin sequence with Z-coefficients (Spanier 1966) of (4.19) gives the long exact 

sequence (with B = B(U2 x U3)) 

O +  Ho(B)-H2(B)-H2(BH)+H1(B)f,H3(B)+H3(BH)-+H2(B) 

Z Z O Z  0 Z 

u e  BI* 

BI* 
H4(B) - H4(BH) -+ H3(B) + * . (4.20) 

o:=,z 0 

where the generators of H2(BU2 x BU3; Z) and H4(BU2 x BU3; 2)  are respectively 
(C,  x 1 , 1  x C,) and (CZ x 1, C: x 1, C1 x C1, 1 X C:, 1 x CZ) where C:= C1 U C1. Note 
that (4.19) also implies that TI(BH) = m(H) = 0 and TZ(BH) = r l (H) = Z. Then 
H2(BH; Z) = Z and clearly B1* cannot vanish on both C1 x 1 and 1 x C1. However, with 
reference to (4.18), B m * ( C 1 )  = 0 and hence 0 = B1*Bk*Cl = BI*(C1 x 1 + 1 x C,) by 
Whitneydualityand commutativity of (4.18). ThusBl*(C1 x 1) = -Bl*(1 x C,) = 8, say 
and then, by exactness of (4.20), e = C1 x 1 + 1 x C1. 

It now follows that in H2(BU2 xBU3; Z) we have (CI X 1)Ue = Cf X 1 + C1 X C1 
and similarly (1 x C,) U e = 1 x C: + C1 x C1. Then Ue acting on H2(BU2 x BU3; Z) 
has kernel (0)  and hence, by exactness of (4.20), H3(BH; Z) = 0. Using exactness once 
again, we have Bl*(Cf x 1 + C1 x Cl) = Bl*(l x C:+ C1 X CI) = 0 and hence Bl*(C:x 
1) = B1*(1 x C:) = -BI*(C1 x C,) = 6 U 6 and so the relevant cohomology groups of 
BH=B(SU2LxU1 xSU~,) /ZS are 

H~(BH; z) = z with generator S = B1*(C1 x 1) 
and 

H4(BH; Z) = Z O Z O Z  

with generators C2L:= Bl"(C2 x l), C2,: = Bl*(l X C2) and 6 U 6. (4.21) 
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NOW BJ*Cz(SU5) = BJ*Bm*Cz(US) = BZ*Bk*Cz(US) = BI"(Cz(U2) X 1 + 1 X 

Cz(U3)+ Cl(U2) X CI(U3)} by Whitney duality. Hence the important map (3.11) is 

BJ"Cz(SU5)= CZL+CZ~-S U S  (4.22) 

with a necessary condition for s u 5  =$ ( S U ~ L  X U1 X su3,)lz6 being 

C2(5>= ~ z L ( 7 7 ) + ~ 2 c ( 7 7 ) - ~ ( 7 7 ) U ~ ( r l )  (4.23) 

and a corresponding sufficient condition leading to splitting but no inhibition. Note how 
the initial topological charge can 'flow' into different channels and be taken up by CZL, 
CzC and S U S in many different ways. 

4.6. 

The second stage of symmetry breaking is (SU2L X U1 X su3,)/Z6+u3, which can be 
studied via the diagrams 

U3 I_ (SU2L x U1 x SU3,)/Z, BU3%B(SU2L x U1 x SU3,)/Z6 
(4.24) 

BU2 xBU3 
\ l1 

U2 x U3 

where 

which factorises as 

A det-1x1 r x l  
U 3 4 U 3  x U3 -U1 x U3 -U2 x U3 

with 

We are interested in Bi*CzL = Bi*BI"(C2 x 1) = Bj"(C2 X l) ,  Bi"(C2,) = 
Bi*BI*(l X CZ) = Bj*(l X CZ) and Bi"(S U 8) = -Bi*BI*(C1 x C,) = -Bj*(C1 x Cl). 
From 0 4.3 we have B det" CI = C1 and clearly ( I X  1)*(CZx 1) = 0 and ( r x  1)*(1 x 
Cz) = CZ. Hence 

Bi*CzL = 0, Bi*Czc = Cz(U3), Bi"((6 US) = C1(U3) U C1(U3). (4.25) 

Thus a necessary and sufficient condition for symmetry breaking of (SU3L x U1 x 
su3c)/z6 to U3 is CzL = 0. Note that in 8 4.5 we saw via (4.23) that a given SU.5 sector 
could break into a ( S U ~ L X U ~  XSU~,)/ZS sector for which CzL# 0. In this case the 
final breaking to the physical subgroup U3 would be inhibited. 

4.7. 

Another popular grand unified group is SO10 breaking down to SU5. In general, we 
could study SO(2n)=$SU(n), and the effect of BJ* on the cohomology of BSO(2n) is 
well known (e.g. Bore1 1967) to be 

(4.26) BJ * p  (SO (2 n ) ) = Cz ( SU ( n ) ) , BJ* Wz(SO(2n)) = 0. 
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Hence the only obstruction to symmetry breaking is a non-vanishing W 2 ( [ )  which is 
equivalent to the global non-existence of SO(2n) spinors. 

5. Conclusions 

We have seen that it is possible to express the necessary and sufficient conditions for 
spontaneous symmetry breaking G + H in terms of certain functional relationships 
between the topological charges of the initial and final gauge sectors. The nature of 
these calculations illustrates once again the usefulness of the fibre bundle formalism of 
Yang-Mills theories when augmented with the cohomology theory necessary to give a 
complete description of the characteristic classes. 

In a functional integral quantisation scheme there will presumably be a summation 
of all initial and final sectors including those pairs in which symmetry breaking is 
blocked. It is clearly important to understand the nature of the stable field configura- 
tions in this case, and to see whether the value of their action is such that they are 
effectively suppressed in the functional integral. In Isham (1981b) this problem is 
discussed briefly, and it is shown that for values of the scalar coupling constant below a 
critical value the stable solution is 4 = 0, so there is complete symmetry restoration. It 
is not known what happens above this critical value, but a heuristic argument suggests 
that a stable solution will only exist if there exists a minimal area, three-dimensional 
submanifold of space-time on which 4 vanishes. This problem is being actively pursued 
and the results will be published in a later paper. 
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